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binary negapositional image of the number of the segment [0; 1]:
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be a positive double stochastic matrix i.e. pij > 0, pi0 +pi1 = 1, p0j +p1j =
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It is known that a binary negapositional number representation is a recoding of a classical binary
representation:
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, an ∈ {0; 1}

Considered in the talk is function F , defined by equality
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p00, if α2n(x) 6= α2n+1(x) = 0,

and αk(x) is k negapositional digit of representation of the number x.

Definition 1. Let (c1, c2, . . . , cm) be a orderly set of positive integers. The Cylinder of m rank with

basis c1c2 . . . cm is called a set ∆
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c1c2...cm of numbers of x ∈ (0; 1] that is first m negapositional digits

of which are c1, c2, . . . , cm respectively, i.e.
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Lemma 2. For a function F defined by the equality (1) the mapping of the cylinder ∆
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Theorem 3. Images of different cylinders of the same rank with the mapping F do not overlap and
in the union give the whole segment [0, 1].

Theorem 4. The function F (x) denoted by the equality (1) is:
1) correctly identified,
2) continuous,
3) strictly increasing,
4) linear for p00 = 0.5 and singular for p00 6= 0.5 (has a derivative equal to zero almost everywhere

in the sense of the Lebesgue measure).

The report proposes the results of studies of the above-mentioned functions.
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